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Random spread on the family of small-world networks
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We present analytical and numerical results of a random walk on the family of small-world graphs. The
average access time shows a crossover from regular to random behavior with increasing distance from the
starting point of the random walk. We introduce an independent step approximation, which enables us to obtain
analytic results for the average access time. We observe a scaling relation for the average access time in the
degree of the nodes. The behavior of the average access time as a fungtishoo¥s striking similarity with
that of the characteristic length of the graph. This observation may have important applications in routing and
switching in networks with a large number of nodes.
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[. INTRODUCTION Another problem with the determination of the shortest path
is the incomplete knowledge of the network. Hence, it is
The small-world network exhibits unusual connectionclear that an alternative method of generating a pathich
properties. On one hand it shows strong clustering, like regud®ed not be the shortgsbecomes necessary in these net-
lar graphs, and on the other hand it shows a very small a/0rks. Our analysis of the random walk shows that the av-
erage shortest path between any two nodes, like randofyf 39€ access timéor the first passage timdetween t\.NO
graphs. Watts and Strogatz have proposed a simple model fifdes varies a®(n), for small-world geometry, whem is
describe small-world networkgl]. The model gives a pre- the number of nodes. It is thus beneficial to consider a net-

scription for generating a one-parameter family of graphsyvork with random rputing or switching, particglarly if it has
ranging from highly clusteredregula) graphs to random small-world properties. Thus the random routing emerges as
graphs. both a practical and a computationally cheaper method for

Various properties of this model have been studied2r9e networks. hatth | o of _
[2—14). The spread and percolation properties investigated in !t IS interesting to note that the normal practice of sending
Refs. [2—5] deal with the spread of informatiofdiseas packets through the internet does have a random element in

along the shortest path in the graph or the spread along tHE If f]‘_ crc])n;]puter Eak_conrl;ections, depen?ir;]g on the agdress
spanning tree. In Ref14] the diffusion process and the dis- 0 Which the packet s to be sent, some of the connections are

persion relations on small-world networks are studied. ~ ¢N0Sen in a deterministic way, while if the packet is not
In this paper, we study random walks on the family of addressed to one of these deterministic values it is sent via
small-world networks. Such a random walk corresponds t ne of the remaining connections randon_1ly. Such a choice is
normally based on the path of least traffic and need not cor-

random spread of information on the network. In any realis d he sh h Th ) I imi
tic application of the spread on a graph, we expect the spred@SPond to the shortest path. There is usually an upper limit

to be somewhere in between the two extremes, viz., th& the number of such steps that the packet tkej if the
shortest path and the random walk. For example, in nvii-node is not reached within these steps the address is treated
gram’s experimenf15], which studies the connection prop- &5 L_mtraceatk)Jle. f?ur_resfults no‘n’ sh(?(\;v that su<_:h a random
erties of social networks, the path of a letter from a randomly’©uting can be e d.ectlve or sl,m.a —lwor g geomgtnles. s f
chosen point to a fixed target is traced. The only conditionh In Sec. 1l we ISCUSS a?a%/tma a(? num?lilca results for
imposed on the transfer of letter is that the letter should pdhe average access timef the random walk on a one-
given to a person whom the sender knows by first name. ThBarameter family of graphs ranging from the regular case to
path followed by such a letter would have both random and"€ random case. We introduce iadependent step approxi-
shortest path elements in it. Another example is the path gpation that allow_s us to get analytical EXpressions for the_
an internet protocol packet which follows a similar algorithm 2V€rage access time. We discuss these results in Sec. Il. Itis
for forwarding the packeltL6]. Most of the earlier work has found that the random walk results are similar to the shortest
concentrated on properties based on the shortest path aﬂét.h resu!ts. Thus fro."? the nature of the outcome of an ex-
hence we address the other extreme in this phb&r periment it may be difficult to conclude Whe_ther the spread

The determination of the shortest path between two node§as rand(f)rr%_or alor}g the Eho_rteit path._An mgortgnth(_:ons_e-
is prohibitively expensive for networks with a large numberq”emt:;,a of this rlfSUt Ca(;] e in the routing and switc mhg ('jn
of connections or networks where nodes and connections a}§"Y P9 networks. Random routing is a promising method,
added or removed dynamically. Examples of such netWorkgarhcularly if th.e network has small-world properties. Sec-
are social networks, telephone networks, the internet, etd!On IV summarizes the results.

II. RANDOM WALK ON SMALL-WORLD GRAPHS

*Electronic address: sagar@prl.ernet.in The random walk on a graph is performed as follows: We
"Electronic address: amritkar@prl.ernet.in start with a fixed nodésayi) and at each step make a jump
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' This is a Xkth order difference equation fdd; ,. We first

consider the cask=1. In this case the above recursion re-
lation reduces to a quadratic form given by
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The equation can be solved using standard techniffl&s
and the solution is given by
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whereA andB are constants. The constants are determined
using the boundary condition®, ,=0 and D_, ,=0.
FIG. 1. The plot of average access time vs the distancd a Hence,
site from the starting pointng=0) for regular graphs. Curves b,
andc correspond t«k=1, 3, and 5, respectively. The points are the D= —1i 24 (2m-n)i— m2+mn.
result of simulations of random walks on a graph of size 1000. The '

li th Iytical and li Its obtained usi . . .
;zs(s?re e analytical and scaling results obtained using @hs Without loss of generality, we assume that the walk starts

from i=0. So the average access time for gitestarting

to a node connected towith uniform probability 1d(i), from zero is

whered(i) is the degree of the node thus performing a

. . — 2
random walk. Such a random walk gives a finltarkov Dp=—m"+mn. (4)
chain[17]. One of the most important quantities of interest
in a finite Markov chain is the average access time.gt Curveain Fig. 1 shows both the analytical and numerical

be the average access time, defined as the first passage tinesults for the cask=1. The linear and quadratic parts are
to the nodg if the walk starts from the node We denote clearly seen. This behavior @f,, is the result of the normal
D;=Dy, - one-dimensional random walk and the effect of the boundary
We perform random walks on the family of graphs gen-condition. Note that{D,,/dm),-n>= 0, as it should for the
erated by the algorithm given by Watts and StrodaizThe  cyclic boundary condition.
prescription gives a one-parameter family of graphs that in- For a general value dk, it is not possible to solve the
terpolates between the regular case and the random case. Wifference equatioril) exactly. The numerical simulations
refer to this family as the family of small-world networks or show that the nature of the curves for differéris the same
graphs. The regular gragbenoted byp=0) is a graph with  as fork=1. This suggests that there may be a scaling relation
n vertices on a circle with each node connectedka@arest for generalk. Using numerical data fitting we find that the
neighbors. The parametéris suitably chosen to keep the following scaling relation fits the data reasonably well:
graph sparse but connected. The other elements of the family
are obtained by random rewiring of each edge in the graph n
with probability p. It is seen that the small-world behavior is Di(m~[1+u In(k)]D#\/k(E :
prominent around the parameter valpe-0.01, i.e., when
only 1% of edges are rewiredp=1 corresponds to the
random cas¢20].

®

whereDY, is the average access time from site 0 to siten
the graph with & nearest neighbors angd=0.86[21].

A possible explanation for such a scaling can be obtained
by reducing the graph by obtaining the quotient using a sub-
Figure 1 shows the results for the average access time ingraph of sizek. Figure 2 explains this procedure for obtain-
simulation of a random walk on the regular graph with 1000ing a reduced graph. The outer graph in Fig. 2 is of size 30
nodes for several values kf The average access time showsand the inner reduced graph is the graph that has only nearest
a linear behavior for smaih and a quadratic nature for large neighbor connections. While the walk on the reduced graph

m due to the circular topology. The lines are the analyticis described by Eq4), the coefficient probably comes from

curves obtained as follows. the average time spent in each block. Note that the number
From the expectation values of conditional events, we camf blocks that the walker has to passnigk.

easily write the recursion relation for average access time for From Fig. 1 we see that the scaling relati@) shows an

the walk starting from nodeto nodem, denoted byD; ,,, as  excellent matching with the numerical results for various

[18] values ofk.

A. The regular case(p=0)
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FIG. 2. The procedure for reducing the regular graph with FIG. 4. Plot of average access time vs the distandeom the

nodes and R neighbors to a graph with/k nodes and two neigh-  starting point of the random walk. The points are the numerical
bors. The outer graph has 30 nodes and the inner reduced graph h@sults forn=1000,k=5, andp=0.0001(open circle p=0.001
15 nodes. (solid circle3, p=0.01 (open triangles and p=0.1 (solid tri-
angles. The lines are obtained using the scaling relation &8g).
B. The random case(p=1)

For the completely random case the access time becomé&¥€raged over all the realizations of the graphs. This approxi-
independent ofn and D; j=n—1i,j. This result can be r_natmn is a k_|nd of mean field approximation done in statis-
obtained as follows. tical mechanics. N o o

We note that to calculate the average access time one L€t Pi be the probability of reaching sifefrom sitei in
must consider an ensemble of graphs for a gigerThe ©ON€ step. It is ob_wous that;P; ;= 1. Using the independent
average access time is obtained by first averaging over sevl€P approximation, we get
eral realizations of the random walk on a given graph and
then over various members of the ensemble of graphs. We Pij=—r.
now introduce an independent step approximation where we on-l
assume that the order of these two averages is interchanged.

Thus in this approximation each step of the random walk is us the probability of feaChi.f?g a site at any time step is
1/(n—1). Hence, the probability of reaching site for the

—— first time int time steps is

1

1 \vt 1
Pm(t)z(l—m> ST (6)

Toooo ThusD,, is given by

D=2 tPy(t)
t

Average access time

.W-,w,,u,,,m.,‘«,,‘,._W,MW“,\"‘ 1 b T =n—1. (7)
\

0.1 We get the interesting and simple result that the average

o A bt il g g access time for any two sites of a random graph is of the

000 | ! ] order of the total number of nodes or sites of the graph. We

D have verified this result numerically.

-500 400 -300 -200 -160 0 100 200 300 400 500
m

) ] C. The intermediate case(0<p<1)
FIG. 3. The plot of average access time vs the distande®m

the starting pointn=0 for a graph with 1000 nodes arid=5, Figure 3 shows the results for average access time on a
generated for various values of parameperThe average access graph with 1000 nodes arid=5. Two distinct behaviors of
time clearly shows a crossover from regular to random behavioRverage access time can be identified from Fig. 3. For small
with increasingm. Note the logarithmic scale for the average accessvalues ofm, the behavior is similar to that of the regular
time. case, while for larger values ah the average access time
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saturates and behaves like that of a random grapk Sec.
[ B). As p increases the saturation of the average access time Di n=(1-p)
becomes more prominent and the crossover from regular to

1 X
_kZ DisimtDisim+1

saturation behavior takes place at smaller and smaller values 1 n-1

of m. For p=0.01, which corresponds to small-world behav- +pl——— > D, .+1 (8)
i ; or i n—2k—1 = hm '

ior [1], the average access time behavior is almost the same |¢|7lk 0 "

as that of the random graph, i.e., a constant of the ordey of

f Il val f th k. Th i . . . .
except for small values oh of the order o € saturation This is a Xth order difference equation. As in the case of

of D, for large values ofmis clearly because of the random "~ X . . .
long range connections. Due to these connections we a'%—o, we first consider the case=1. The recursion relation

able to reach the sites at the other end more quickly, thugecomes
leading to the saturation @,

To obtain analytical estimates of the average access time Dim=(1-p)[3(Dis1m+Di—1m) +1]
we again make use of the independent step approximation

defined in Sec. IIB. In this approximation each step in the o

walk is taken with a probability (% p) to one of the nearest tp n-3 ZO Dimt1}, ©
2k sites and with probabilityp to the remaining sites. In i#ii-li+1

analogy with thegp=0 case we write a recursion relation for

D m (see the Appendix which can be written as

1 ! 1
Di,m:(l_p)[%(Di+l,m+Di—1,m)+1]+p m; Dlm+1 (D|m+D|+lm+D| lm)}

With a little algebra, we finally get where
Di m=&(D; +Di_1m)*¢, 10
i,m E( i+1m i 1,m) 4 ( ) 6, = 1 (1+m)
where 2§
(n—=3)—p(n—1) The constants\ and B are determined using the boundary
= 2(n—3+p) ct:)ondmonstm 0 andD,_, n=0. The solution is given
y
and
- D — . 1" "o "o " 0"+ o™ L
m_zg_l e—n_g—n 1
Dinwtn—3 + -
B pjzo o (11)
~ n-3+p

where without loss of generality we have put the starting
Note that the sun 3Di m is independent of the site point asi=0. We note thaD, has an exponential depen-
index and can be treated as a constant to be determined sefience orm, which is different from the polynomial depen-
consistently from the solution. We solve the different equa-dence forp=0. This exponential dependence is responsible

tion (10) using the standard methof8]: for the saturation oD, as observed in Fig. 3 for larga.
This point is further discussed in the next section.
D =A™ 4 ggm ) { The sum3 " tD,, occurring in¢ is calculated by sum-
hm + 26—1’ ming Eq.(12) for all values ofm and is given by

n—1

(n—3)
Dn= n—1
m=0

pil+n/ > [(6-™6."—6,"60-"—6-"+6,™/(6;"—6-")—1]
m=1
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FIG. 5. Plot of x as a function of.

FIG. 6. Plot of G(p)/G(0), i.e., the normalized average access
Note that Eq(8) and further analysis exhibits random behav-time for the diametrically opposite point of the graphpdhe plot
ior as p—(n—2k—1)/(n—1), rather thanp=1 (see Ap- also shows characteristic lengtlip)/L(0) as a function of. Both

pendiy. guantities show a similar behavior. In particular, the sharp drop near
For general values &, we again write a scaling relation the small-world regimeff~0.01) to the value corresponding to the
similar to that for the casp=0: random case is clearly seen in the figure.

p . (N reason behind the saturation of the solution for nonpdiar
Dm(n,p)~[1+u(p.K)IN(K) Dy 5P |- (120 asymptoticm, which cannot be obtained fop=0. This
change in the behavior is probably a reflection of the fact that
Figure 4 shows the match of the numerical data with thehere is a phase transition pt=0 [13].
ana|ytic expressions_ The paramelerhas a weak depen_ For the random case we again find a similar situation. As
dence ork for nonzerop, which we have neglected in further P—(n—3)/(n—1), which corresponds to the random case
analysis. Figure 5 shows the behavior joffor the various ~ (see the Appendix Eq. (9) reduces td,,= ¢ and is consis-
values ofp. In Fig. 4 it is clearly seen that for small and large tent with the solutionD,=0 andDy,=n—1, m#0. How-
values ofp the match between numerical results and Eqs€Ver, the solutiofEg. (11)] does not smoothly reduce to a
(11) and (5) is quite good, but for intermediate valuespf constant function because one of the roats X diverges.
there is a considerable deviation from the numerical results It is interesting to consider the effect of the boundary on
for small values ofn. This fact can be understood as follows. average access time. This effect is quite important for the
For small values op, i.e., whenp~10"4, the graph is P=0 case where the quadratic dependencenas obtained
nearly regular and the blocks of sikere nearly completely due to the boundary conditiof#). For nonzerop, the con-
connected graphs, but asncreases the probability of leav- cept of a boundary starts breaking down due to long range
ing the block randomly for a faraway point increases, givingconnections. One is able to reach the other end more quickly
rise to higher average access times for the nearby points i@u€ to these random connections. In the extreme case of
the block than in the analytical values. Again, for high valuesrandom networks there is no boundary. The breaking of the
of p the expression has a good match because as far as theundary is reflected in the saturation@f, for largem. In
average access time is concerned the completely connectéft, forp=0.01(or for largerp), which is approximately the

block and a random block behave in a similar way. small-world value, the boundary has almost vanished and the
behavior is similar to that for a random netwdgdee Fig. 3
IIl. DISCUSSION except for very smalin. Thus for the family of small-world

graphs the boundary is not important for most of the range of
It is interesting to compare the limiting behaviors of in- p.

termediate cases with those for the regular and random cases. Next, we consider the average access time for the dia-
Equation(9) reduces to Eq(2) asp— 0. However, the solu- metrically opposite node, i.eG(p)=D,»(p) (Ref.[9] dis-
tion [Eq. (11)] does not smoothly reduce to E@). Thisis  cusses some results for diametrically opposite nodEsis
because of the degeneracy in the roots of the quadratic imquantity is of interest as it should be correlated with the
dicial equation Eq(2) for p=0, which is lifted for nonzero average cover time for the graph. Figure 6 shows the behav-
p. Thus the solution changes from a polynomial to an expoior of the access time of the diametrically opposite point
nential in site index ap becomes nonzero. This explains the normalized to that of th@=0 case, i.e.G(p)/G(0), as a
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function of p. The figure also shows the graph of character-mediate cases the average access time shows a crossover
istic lengthL (p)/L(0) [1], which is the average shortest path from regular to random behavior with increasing distances.
between any two sites. Both the curves in the graph, corre- The normalized average access time of diametrically op-
sponding to the shortest path and the random walk, showosite nodes shows almost identical behavior to that of the
similar behavior. This observation has interesting consecharacteristic length as a function pf This observation
guences. Random spread on a small-world network considnight be very important in several applications where the
erably reduces the access time compared to that of the regaumber of nodes in a graph is very large or complete infor-
lar graph, as in the case of the shortest path spread. This camation about the graph is not available. In these cases ran-
be very useful in applications such as routing and switchinglom routing or switching may be beneficial.

where random routing is cheaper. The determination of the

shortest path is generally very expensive for large or dynami- ACKNOWLEDGMENTS

cally changing networks.. Also in many cases complete infor- We thank V. Balakrishnan, G. Baskaran, G. Menon, and
mation on the network is not available. Examples of suchg Ramanujam for fruitful discussions. We thank M. New-
networks are social networks, telephone networks, the inter-

. man for a critical reading of the manuscript and comments.
net, etc., where the number of nodes is very large and also 9 P

dynamically_changing. Thg dynamics of the networ.k in- APPENDIX
cludes additions and deletions of nodes and connections as o
well as temporary failure of some nodes and connections. In Derivation of Eq. (9)

such cases random routing may be more effective and \ye assume that the probability of breaking an edge is

cheaper, particularly if the graph has the small-world geomyye identify that the contribution to the average access time

etry where the average access time varie®@s). We note  of sjitej comes from three types of events.

that it may be necessary in a random routing to place an (1) All the 2k neighbors of sitg are connected tp The

upper limit on the path length as is done in network connecpopability associated with this event isp) 2.

tions (see the Introductionsince there could be some paths  (2) Some of the neighbors are connecteg tsay X—r)

of very long length although the average is small. andr are connected to the faraway sites. The probability
In the calculations we have introduced an independenssociated with this event & (1—p)2<.

step approximation, where we average over the various real- (3) None of the neighbors of are connected t§. The
izations of graphs at each time step. This is a kind of meam,ohapility associated with this eventfigX.

field approximation and has allowed us to obtain recursion By the independent step approximation the degree of each
relations for the average access time. We expect this approxigyde js . This enables us to write a recursion relation for
mation to be reasonably good for the random case. Even fofyerage access time using the properties of the expectation
intermediate cases, the results obtained by this approximgx e of conditional probability18]. We write

tion are in good agreement with the numerical values.

For general values df the recursion relations for average 2k
access time cannot be solved. However, the behavior of the Dim= 2 2kCrpr(l— p)2"‘r
average access time shows an interesting scaling relation in r=0
k. As discussed in Sec. Il A the scaling relation corresponds ok—r—1[ X
to a reducing procedure where a graphnafiodes with X _— Z (Di_| m*+Diy m)}
connections is scaled to a graphrofk nodes with nearest [ 2k =1 ’ '
neighbor connections and preserving the far edgésThe
scaling gives a very good fit to the numerical data except for r ot
small values ofn, whenp=0.001. thook—1 2«0 Dimp+1,  (AD
Lastly we consider the effect of the number of nodes on I#i—k,...i+k
our results. We have studied lattices up to size20 000. L
We have not noticed any significant deviation from the re- PPN
sults reported here. =1 p)[ZKZO (Distm®Dicgm) 1
1 n—1
IV. SUMMARY P o |Zo Dimtl|. (A2
[#i—K,...i+k

In this paper, we have studied a random walk on the fam-

ily of small-world graphs. For the regular case the averagen the above calculation we have assumed that the edge bro-
access time shows linear behavior for small distances andj&n with probabilityp is not rewired to one of theknearest
quadratic nature for large distances. An interesting scalingieighbors. Due to this the random graph limit corresponds to
relation ink is observed for the average access time. For thgy=(n—2k—1)/(n—1) instead ofp= 1. This can be seen by
random case the average access timaisX) and is inde-  equating the probability of a connection to a nearest neighbor
pendent of distance arid An independent step approxima- to the probability of a connection to any of the other sites,
tion has enabled us to get the analytical result for the average

access time. The same approximation allows us to write a (1-p) _ p

recursion relation for the intermediate valuegpof-or inter- 2k n—2k—1°

041104-6



RANDOM SPREAD ON THE FAMILY OF SMALL-WORLD ...

[1] D. J. Watts and S. H. Strogatz, Natufeondon 393 440
(1998.

[2] S. A. Pandit and R. E. Amritkar, Phys. Rev. @, R1119
(1999.

[3] M. E. J. Newman and D. J. Watts, Phys. Rev6& 7332
(1999.

[4] C. F. Moukarzel, Phys. Rev. B0, 6263(1999.

[5] C. Moore and M. E. J. Newmafunpublished

[6] M. Barthdémy and L. A. N. Amaral, Phys. Rev. Le82, 3180
(1999.

[7] M. A. de Menezes, C. F. Moukarzel, and T. J. P. Penna, e-print

cond-mat/9903426.

[8] D. Helbing and T. Vicsek, e-print cond-mat/9904327.

[9] R. V. Kulkarni, E. Almaas, and D. Stroud, Phys. Rev6E
4268(2000; e-print cond-mat/9905066.

[10] L. A. N. Amaral, A. Scala, M. BartHémy, and H. E. Stanley,
e-print cond-mat/0001458.

[11] A. Barrat and M. Weigt, Eur. Phys. J. B3, 547 (2000.

[12] S. N. Dorogovtsev and J. F. F. Mendes,
cond-mat/9907445.

[13] M. E. J. Newman and D. J. Watts, Phys. Rev6& 7332
(1999.

[14] R. Monasson, e-print cond-mat/9903347.

e-print

PHYSICAL REVIEW E63 041104

[15] S. Milgram, Psychol. Todag, 60 (1967).

[16] W. R. StevensUnix Network ProgrammingPrentice-Hall,
New Delhi, 1993.

[17] L. Lovasz, Combinatorics: Paul Erode is Eighty (Bolyali
Society Mathematical Studies, Keszthely, 199%ol. 2,
pp. 1-46.

[18] W. Feller, An Introduction to Probability Theory and Its
Applications 3rd ed.(Wiley, New York, 1968.

[19] The maximum number of steps a packet can take is determined

by the size of the “Time To Live” field in the packet header,

which is 1 byte long, i.e., the maximum time to live is 255

steps.

[20] In the rewiring algorithm of Watts and Strogatz the random
graph defined by =1 is not truly random. However, as far as
spread is concerned the small-world netwop(0.01) itself
is a good enough approximation to the random network.
Hence, thep=1 case is adequate to describe the random be-
havior.

[21] We have also tried other types of scaling relations, in particu-
lar, a scaling relation of the formﬁ(n)%k“D#,k(n/k). How-
ever, we find that the relatioff) gives a better fit to the
numerical data.

041104-7



