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Random spread on the family of small-world networks
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We present analytical and numerical results of a random walk on the family of small-world graphs. The
average access time shows a crossover from regular to random behavior with increasing distance from the
starting point of the random walk. We introduce an independent step approximation, which enables us to obtain
analytic results for the average access time. We observe a scaling relation for the average access time in the
degree of the nodes. The behavior of the average access time as a function ofp shows striking similarity with
that of the characteristic length of the graph. This observation may have important applications in routing and
switching in networks with a large number of nodes.
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I. INTRODUCTION

The small-world network exhibits unusual connecti
properties. On one hand it shows strong clustering, like re
lar graphs, and on the other hand it shows a very small
erage shortest path between any two nodes, like ran
graphs. Watts and Strogatz have proposed a simple mod
describe small-world networks@1#. The model gives a pre
scription for generating a one-parameter family of grap
ranging from highly clustered~regular! graphs to random
graphs.

Various properties of this model have been stud
@2–14#. The spread and percolation properties investigate
Refs. @2–5# deal with the spread of information~disease!
along the shortest path in the graph or the spread along
spanning tree. In Ref.@14# the diffusion process and the dis
persion relations on small-world networks are studied.

In this paper, we study random walks on the family
small-world networks. Such a random walk corresponds
random spread of information on the network. In any rea
tic application of the spread on a graph, we expect the sp
to be somewhere in between the two extremes, viz.,
shortest path and the random walk. For example, in M
gram’s experiment@15#, which studies the connection prop
erties of social networks, the path of a letter from a random
chosen point to a fixed target is traced. The only condit
imposed on the transfer of letter is that the letter should
given to a person whom the sender knows by first name.
path followed by such a letter would have both random a
shortest path elements in it. Another example is the path
an internet protocol packet which follows a similar algorith
for forwarding the packet@16#. Most of the earlier work has
concentrated on properties based on the shortest path
hence we address the other extreme in this paper@14#.

The determination of the shortest path between two no
is prohibitively expensive for networks with a large numb
of connections or networks where nodes and connections
added or removed dynamically. Examples of such netwo
are social networks, telephone networks, the internet,
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Another problem with the determination of the shortest p
is the incomplete knowledge of the network. Hence, it
clear that an alternative method of generating a path~which
need not be the shortest! becomes necessary in these n
works. Our analysis of the random walk shows that the
erage access time~or the first passage time! between two
nodes varies asO(n), for small-world geometry, wheren is
the number of nodes. It is thus beneficial to consider a n
work with random routing or switching, particularly if it ha
small-world properties. Thus the random routing emerges
both a practical and a computationally cheaper method
large networks.

It is interesting to note that the normal practice of send
packets through the internet does have a random eleme
it. If a computer hask connections, depending on the addre
to which the packet is to be sent, some of the connections
chosen in a deterministic way, while if the packet is n
addressed to one of these deterministic values it is sent
one of the remaining connections randomly. Such a choic
normally based on the path of least traffic and need not c
respond to the shortest path. There is usually an upper l
to the number of such steps that the packet takes@19#; if the
node is not reached within these steps the address is tre
as untraceable. Our results now show that such a ran
routing can be effective for small-world geometries.

In Sec. II we discuss analytical and numerical results
the average access timeof the random walk on a one
parameter family of graphs ranging from the regular case
the random case. We introduce anindependent step approxi
mation that allows us to get analytical expressions for t
average access time. We discuss these results in Sec. III
found that the random walk results are similar to the shor
path results. Thus from the nature of the outcome of an
periment it may be difficult to conclude whether the spre
was random or along the shortest path. An important con
quence of this result can be in the routing and switching
very big networks. Random routing is a promising metho
particularly if the network has small-world properties. Se
tion IV summarizes the results.

II. RANDOM WALK ON SMALL-WORLD GRAPHS

The random walk on a graph is performed as follows: W
start with a fixed node~say i! and at each step make a jum
©2001 The American Physical Society04-1
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SAGAR A. PANDIT AND R. E. AMRITKAR PHYSICAL REVIEW E63 041104
to a node connected toi with uniform probability 1/d( i ),
where d( i ) is the degree of the nodei, thus performing a
random walk. Such a random walk gives a finiteMarkov
chain @17#. One of the most important quantities of intere
in a finite Markov chain is the average access time. LetDi , j
be the average access time, defined as the first passage
to the nodej if the walk starts from the nodei. We denote
D j5D0,j .

We perform random walks on the family of graphs ge
erated by the algorithm given by Watts and Strogatz@1#. The
prescription gives a one-parameter family of graphs that
terpolates between the regular case and the random case
refer to this family as the family of small-world networks o
graphs. The regular graph~denoted byp50! is a graph with
n vertices on a circle with each node connected to 2k nearest
neighbors. The parameterk is suitably chosen to keep th
graph sparse but connected. The other elements of the fa
are obtained by random rewiring of each edge in the gr
with probabilityp. It is seen that the small-world behavior
prominent around the parameter valuep50.01, i.e., when
only 1% of edges are rewired.p51 corresponds to the
random case@20#.

A. The regular case„pÄ0…

Figure 1 shows the results for the average access time
simulation of a random walk on the regular graph with 10
nodes for several values ofk. The average access time show
a linear behavior for smallm and a quadratic nature for larg
m due to the circular topology. The lines are the analy
curves obtained as follows.

From the expectation values of conditional events, we
easily write the recursion relation for average access time
the walk starting from nodei to nodem, denoted byDi ,m , as
@18#

FIG. 1. The plot of average access time vs the distancem of a
site from the starting point (m50) for regular graphs. Curvesa, b,
andc correspond tok51, 3, and 5, respectively. The points are t
result of simulations of random walks on a graph of size 1000. T
lines are the analytical and scaling results obtained using Eqs~4!
and ~5!.
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Di ,m5
1

2k (
j 51

k

~Di 1 j ,m1Di 2 j ,m!11. ~1!

This is a 2kth order difference equation forDi ,m . We first
consider the casek51. In this case the above recursion r
lation reduces to a quadratic form given by

Di ,m5 1
2 ~Di 11,m1Di 21,m!11. ~2!

The equation can be solved using standard techniques@18#
and the solution is given by

Di ,m52~m2 i !21A~m2 i !1B, ~3!

whereA and B are constants. The constants are determi
using the boundary conditionsDm,m50 and Dm2n,m50.
Hence,

Di ,m52 i 21~2m2n!i 2m21mn.

Without loss of generality, we assume that the walk sta
from i 50. So the average access time for sitem starting
from zero is

Dm52m21mn. ~4!

Curvea in Fig. 1 shows both the analytical and numeric
results for the casek51. The linear and quadratic parts a
clearly seen. This behavior ofDm is the result of the norma
one-dimensional random walk and the effect of the bound
condition. Note that (]Dm /]m)m5n/250, as it should for the
cyclic boundary condition.

For a general value ofk, it is not possible to solve the
difference equation~1! exactly. The numerical simulation
show that the nature of the curves for differentk is the same
as fork51. This suggests that there may be a scaling rela
for generalk. Using numerical data fitting we find that th
following scaling relation fits the data reasonably well:

Dm
k ~n!'@11m ln~k!#Dm/k

1 S n

kD , ~5!

whereDm
k is the average access time from site 0 to sitem on

the graph with 2k nearest neighbors andm50.86 @21#.
A possible explanation for such a scaling can be obtai

by reducing the graph by obtaining the quotient using a s
graph of sizek. Figure 2 explains this procedure for obtai
ing a reduced graph. The outer graph in Fig. 2 is of size
and the inner reduced graph is the graph that has only ne
neighbor connections. While the walk on the reduced gra
is described by Eq.~4!, the coefficient probably comes from
the average time spent in each block. Note that the num
of blocks that the walker has to pass ism/k.

From Fig. 1 we see that the scaling relation~5! shows an
excellent matching with the numerical results for vario
values ofk.

e
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RANDOM SPREAD ON THE FAMILY OF SMALL-WORLD . . . PHYSICAL REVIEW E63 041104
B. The random case„pÄ1…

For the completely random case the access time beco
independent ofm and Di , j5n21,; i , j . This result can be
obtained as follows.

We note that to calculate the average access time
must consider an ensemble of graphs for a givenp. The
average access time is obtained by first averaging over
eral realizations of the random walk on a given graph a
then over various members of the ensemble of graphs.
now introduce an independent step approximation where
assume that the order of these two averages is interchan
Thus in this approximation each step of the random walk

FIG. 3. The plot of average access time vs the distancem from
the starting pointm50 for a graph with 1000 nodes andk55,
generated for various values of parameterp. The average acces
time clearly shows a crossover from regular to random beha
with increasingm. Note the logarithmic scale for the average acc
time.

FIG. 2. The procedure for reducing the regular graph withn
nodes and 2k neighbors to a graph withn/k nodes and two neigh
bors. The outer graph has 30 nodes and the inner reduced grap
15 nodes.
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averaged over all the realizations of the graphs. This appr
mation is a kind of mean field approximation done in stat
tical mechanics.

Let Pi , j be the probability of reaching sitej from site i in
one step. It is obvious that( i Pi , j51. Using the independen
step approximation, we get

Pi , j5
1

n21
.

Thus the probability of reaching a sitem at any time step is
1/(n21). Hence, the probability of reaching sitem for the
first time in t time steps is

Pm~ t !5S 12
1

n21D t21 1

n21
. ~6!

ThusDm is given by

Dm5(
t

tPm~ t !

5n21. ~7!

We get the interesting and simple result that the aver
access time for any two sites of a random graph is of
order of the total number of nodes or sites of the graph.
have verified this result numerically.

C. The intermediate case„0ËpË1…

Figure 3 shows the results for average access time o
graph with 1000 nodes andk55. Two distinct behaviors of
average access time can be identified from Fig. 3. For sm
values ofm, the behavior is similar to that of the regula
case, while for larger values ofm the average access tim

r
s

FIG. 4. Plot of average access time vs the distancem from the
starting point of the random walk. The points are the numeri
results forn51000,k55, andp50.0001~open circles!, p50.001
~solid circles!, p50.01 ~open triangles!, and p50.1 ~solid tri-
angles!. The lines are obtained using the scaling relation Eq.~12!.

has
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SAGAR A. PANDIT AND R. E. AMRITKAR PHYSICAL REVIEW E63 041104
saturates and behaves like that of a random graph~see Sec.
II B !. As p increases the saturation of the average access
becomes more prominent and the crossover from regula
saturation behavior takes place at smaller and smaller va
of m. For p50.01, which corresponds to small-world beha
ior @1#, the average access time behavior is almost the s
as that of the random graph, i.e., a constant of the order on,
except for small values ofm of the order ofk. The saturation
of Dm for large values ofm is clearly because of the rando
long range connections. Due to these connections we
able to reach the sites at the other end more quickly, t
leading to the saturation ofDm .

To obtain analytical estimates of the average access
we again make use of the independent step approxima
defined in Sec. II B. In this approximation each step in
walk is taken with a probability (12p) to one of the neares
2k sites and with probabilityp to the remaining sites. In
analogy with thep50 case we write a recursion relation fo
Di ,m ~see the Appendix!,
s
a
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Di ,m5~12p!F 1

2k (
l 50

k

~Di 1 l ,m1Di 2 l ,m!11G
1pF 1

n22k21 (
l 50

lÞ i 2k,...,i 1k

n21

Dl ,m11G . ~8!

This is a 2kth order difference equation. As in the case
p50, we first consider the casek51. The recursion relation
becomes

Di ,m5~12p!@ 1
2 ~Di 11,m1Di 21,m!11#

1pF 1

n23 (
l 50

iÞ i ,i 21,i 11

n21

Dl,m11G, ~9!

which can be written as
Di ,m5~12p!@ 1
2 ~Di 11,m1Di 21,m!11#1pF 1

n23 (
l 50

n21

Dl ,m112
1

n23
~Di ,m1Di 11,m1Di 21,m!G .
ry

ing
-
-
ble
With a little algebra, we finally get

Di ,m5j~Di 11,m1Di 21,m!1z, ~10!

where

j5
~n23!2p~n21!

2~n231p!

and

z5

p(
j 50

n21

Di ,m1n23

n231p
.

Note that the sumS j 50
n21Di ,m is independent of the site

index and can be treated as a constant to be determined
consistently from the solution. We solve the different equ
tion ~10! using the standard methods@18#:

Di ,m5Au1
~m2 i !1Bu2

~m2 i !2
z

2j21
,

elf-
-

where

u65
1

2j
~16A124j2!.

The constantsA and B are determined using the bounda
conditionsDm,m50 andDm2n,m50. The solution is given
by

Dm5
z

2j21 Fu2
2mu1

2n2u1
2mu2

2n2u2
2m1u1

2m

u1
2n2u2

2n 21G ,
~11!

where without loss of generality we have put the start
point as i 50. We note thatDm has an exponential depen
dence onm, which is different from the polynomial depen
dence forp50. This exponential dependence is responsi
for the saturation ofDm as observed in Fig. 3 for largem.
This point is further discussed in the next section.

The sumSm50
n21 Dm occurring inz is calculated by sum-

ming Eq.~11! for all values ofm and is given by
(
m50

n21

Dm5
~n23!

pH 11n/ (
m51

n21

@~u2
2mu1

2n2u1
2mu2

2n2u2
2m1u1

2m!/~u1
2n2u2

2n!21#J .
4-4
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RANDOM SPREAD ON THE FAMILY OF SMALL-WORLD . . . PHYSICAL REVIEW E63 041104
Note that Eq.~8! and further analysis exhibits random beha
ior as p→(n22k21)/(n21), rather thanp51 ~see Ap-
pendix!.

For general values ofk, we again write a scaling relatio
similar to that for the casep50:

Dm
k ~n,p!'@11m~p,k!ln~k!#Dm/k

1 S n

k
,pD . ~12!

Figure 4 shows the match of the numerical data with
analytic expressions. The parameterm has a weak depen
dence onk for nonzerop, which we have neglected in furthe
analysis. Figure 5 shows the behavior ofm for the various
values ofp. In Fig. 4 it is clearly seen that for small and larg
values ofp the match between numerical results and E
~11! and ~5! is quite good, but for intermediate values ofp
there is a considerable deviation from the numerical res
for small values ofm. This fact can be understood as follow

For small values ofp, i.e., whenp'1024, the graph is
nearly regular and the blocks of sizek are nearly completely
connected graphs, but asp increases the probability of leav
ing the block randomly for a faraway point increases, givi
rise to higher average access times for the nearby poin
the block than in the analytical values. Again, for high valu
of p the expression has a good match because as far a
average access time is concerned the completely conne
block and a random block behave in a similar way.

III. DISCUSSION

It is interesting to compare the limiting behaviors of i
termediate cases with those for the regular and random ca
Equation~9! reduces to Eq.~2! asp→0. However, the solu-
tion @Eq. ~11!# does not smoothly reduce to Eq.~4!. This is
because of the degeneracy in the roots of the quadratic
dicial equation Eq.~2! for p50, which is lifted for nonzero
p. Thus the solution changes from a polynomial to an ex
nential in site index asp becomes nonzero. This explains th

FIG. 5. Plot ofm as a function ofp.
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reason behind the saturation of the solution for nonzerop for
asymptotic m, which cannot be obtained forp50. This
change in the behavior is probably a reflection of the fact t
there is a phase transition atp50 @13#.

For the random case we again find a similar situation.
p→(n23)/(n21), which corresponds to the random ca
~see the Appendix!, Eq. ~9! reduces toDm5z and is consis-
tent with the solutionD050 and Dm5n21, mÞ0. How-
ever, the solution@Eq. ~11!# does not smoothly reduce to
constant function because one of the roots (u1) diverges.

It is interesting to consider the effect of the boundary
average access time. This effect is quite important for
p50 case where the quadratic dependence onm is obtained
due to the boundary condition~4!. For nonzerop, the con-
cept of a boundary starts breaking down due to long ra
connections. One is able to reach the other end more qui
due to these random connections. In the extreme cas
random networks there is no boundary. The breaking of
boundary is reflected in the saturation ofDm for largem. In
fact, forp.0.01~or for largerp!, which is approximately the
small-world value, the boundary has almost vanished and
behavior is similar to that for a random network~see Fig. 3!
except for very smallm. Thus for the family of small-world
graphs the boundary is not important for most of the range
p.

Next, we consider the average access time for the
metrically opposite node, i.e.,G(p)5Dn/2(p) ~Ref. @9# dis-
cusses some results for diametrically opposite nodes!. This
quantity is of interest as it should be correlated with t
average cover time for the graph. Figure 6 shows the beh
ior of the access time of the diametrically opposite po
normalized to that of thep50 case, i.e.,G(p)/G(0), as a

FIG. 6. Plot ofG(p)/G(0), i.e., the normalized average acce
time for the diametrically opposite point of the graph, vsp. The plot
also shows characteristic lengthL(p)/L(0) as a function ofp. Both
quantities show a similar behavior. In particular, the sharp drop n
the small-world regime (p'0.01) to the value corresponding to th
random case is clearly seen in the figure.
4-5
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SAGAR A. PANDIT AND R. E. AMRITKAR PHYSICAL REVIEW E63 041104
function of p. The figure also shows the graph of charact
istic lengthL(p)/L(0) @1#, which is the average shortest pa
between any two sites. Both the curves in the graph, co
sponding to the shortest path and the random walk, sh
similar behavior. This observation has interesting con
quences. Random spread on a small-world network con
erably reduces the access time compared to that of the r
lar graph, as in the case of the shortest path spread. This
be very useful in applications such as routing and switch
where random routing is cheaper. The determination of
shortest path is generally very expensive for large or dyna
cally changing networks. Also in many cases complete inf
mation on the network is not available. Examples of su
networks are social networks, telephone networks, the in
net, etc., where the number of nodes is very large and
dynamically changing. The dynamics of the network
cludes additions and deletions of nodes and connection
well as temporary failure of some nodes and connections
such cases random routing may be more effective
cheaper, particularly if the graph has the small-world geo
etry where the average access time varies asO(n). We note
that it may be necessary in a random routing to place
upper limit on the path length as is done in network conn
tions ~see the Introduction! since there could be some pat
of very long length although the average is small.

In the calculations we have introduced an independ
step approximation, where we average over the various r
izations of graphs at each time step. This is a kind of m
field approximation and has allowed us to obtain recurs
relations for the average access time. We expect this app
mation to be reasonably good for the random case. Even
intermediate cases, the results obtained by this approx
tion are in good agreement with the numerical values.

For general values ofk the recursion relations for averag
access time cannot be solved. However, the behavior of
average access time shows an interesting scaling relatio
k. As discussed in Sec. II A the scaling relation correspo
to a reducing procedure where a graph ofn nodes with 2k
connections is scaled to a graph ofm/k nodes with neares
neighbor connections and preserving the far edges@2#. The
scaling gives a very good fit to the numerical data except
small values ofm, whenp>0.001.

Lastly we consider the effect of the number of nodes
our results. We have studied lattices up to sizen520 000.
We have not noticed any significant deviation from the
sults reported here.

IV. SUMMARY

In this paper, we have studied a random walk on the fa
ily of small-world graphs. For the regular case the avera
access time shows linear behavior for small distances a
quadratic nature for large distances. An interesting sca
relation ink is observed for the average access time. For
random case the average access time is (n21) and is inde-
pendent of distance andk. An independent step approxima
tion has enabled us to get the analytical result for the ave
access time. The same approximation allows us to writ
recursion relation for the intermediate values ofp. For inter-
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mediate cases the average access time shows a cros
from regular to random behavior with increasing distance

The normalized average access time of diametrically
posite nodes shows almost identical behavior to that of
characteristic length as a function ofp. This observation
might be very important in several applications where
number of nodes in a graph is very large or complete inf
mation about the graph is not available. In these cases
dom routing or switching may be beneficial.
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APPENDIX

Derivation of Eq. „9…

We assume that the probability of breaking an edge isp.
We identify that the contribution to the average access t
of site j comes from three types of events.

~1! All the 2k neighbors of sitej are connected toj. The
probability associated with this event is (12p)2k.

~2! Some of the neighbors are connected toj ~say 2k2r !
and r are connected to the faraway sites. The probabi
associated with this event ispr(12p)2k2r .

~3! None of the neighbors ofj are connected toj. The
probability associated with this event isp2k.

By the independent step approximation the degree of e
node is 2k. This enables us to write a recursion relation f
average access time using the properties of the expecta
value of conditional probability@18#. We write

Di ,m5(
r 50

2k

2kCrp
r~12p!2k2r

3H 2k2r 21

2k F(
l 51

k

~Di 2 l ,m1Di 1 l ,m!G
1

r

n22k21 (
l 50

lÞ i 2k,...,i 1k

n21

Dl ,mJ 11, ~A1!

5~12p!F 1

2k (
l 50

k

~Di 1 l ,m1Di 2 l ,m!11G
1pF 1

n22k21 (
l 50

lÞ i 2k,...,i 1k

n21

Dl ,m11G . ~A2!

In the above calculation we have assumed that the edge
ken with probabilityp is not rewired to one of the 2k nearest
neighbors. Due to this the random graph limit correspond
p5(n22k21)/(n21) instead ofp51. This can be seen by
equating the probability of a connection to a nearest neigh
to the probability of a connection to any of the other site

~12p!

2k
5

p

n22k21
.

4-6
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